Anion-controlled Preparation of Chiral S-Bridged Co^{III}Pt^{II}₂ and Co^{III}₂Pt^{II}₂ Complexes Consisting of [Co(D-penicillaminato-*N*,*O*,*S*)₂]⁻ and [Pt(CH₃NH₂)₂]²⁺ Units

Asako Igashira-Kamiyama, Junji Fujioka, Tomoki Kodama, Tatsuya Kawamoto, and Takumi Konno* Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043

(Received March 6, 2006; CL-060261; E-mail: konno@ch.wani.osaka-u.ac.jp)

Treatment of trans(N)-[Co(D-pen-N,O,S)₂]⁻ with trans-[PtCl₂(CH₃NH₂)₂] in water, followed by the addition of NaCl and NaClO₄, gave chiral S-bridged Co^{III}Pt^{II}₂ and Co^{III}₂Pt^{II}₂ complexes with trans(O)-[Co(D-pen-N,O,S)₂]⁻ units, respectively. The Co^{III}Pt^{II}₂ complex reacted with the racemic fac(S)-[Co(aet)₃] to form a chiral Co^{III}₂Pt^{II}₂ complex with trans(O)-[Co(D-pen-N,O,S)₂]⁻ and Δ -fac(S)-[Co(aet)₃] units.

During the past decade, considerable attention has been drawn to the rational synthesis of chiral metal compounds in the field of coordination stereochemistry.¹ This is stimulated by the growing interest in the design and creation of well-organized metallo-supramolecular species, the overall structures of which can be controlled by the chirality of their building blocks.² Our research interest has been directed toward this subject, focused on the aggregation of chiral octahedral complex-units containing simple aminothiolate-type ligands.^{3,4} Recently, we have shown that $[Co(D-pen-N,O,S)_2]^-$ (D-pen = D-penicillaminate) can be aggregated by transition-metal ions to form S-bridged polynuclear structures.⁵ Interestingly, the reactions of trans(N)-[Co(D-pen-N,O,S)₂]⁻ with linear Ag⁺ or Au⁺ were accompanied by the *trans(N)*-to-*trans(O)* isomerization to give a $Co^{III}_{3}M_{3}$ hexanuclear structure in $[M_{3}\{Co(D-pen-N,O,S)_{2}\}_{3}]$ $(M = Ag^{I} \text{ and } Au^{I})$,^{5b} while the corresponding reactions with square-planar [PdCl₄]²⁻ or [PtCl₄]²⁻ proceeded with retention of trans(N) to produce a Co^{III}M'Co^{III} trinuclear structure in $[M' \{Co(D-pen-N,O,S)_2\}_2]$ (M' = Pd^{II} and Pt^{II}).^{5a,5c} In this context, we started to investigate the reactions of trans(N)-[Co(Dpen- N,O,S_{2} with *trans*-[PtCl₂(RNH₂)₂] that could be available as a linear linker for the construction of S-bridged structures,^{4b} in order to elucidate factors dominating the stereochemistry of chiral polynuclear complexes. Here, we report that the reaction with trans-[PtCl₂(CH₃NH₂)₂] does not afford an expected Co^{III}₃Pt^{II}₃ hexanuclear complex analogous to [M₃-{Co(D-pen-N,O,S)₂}₃] but leads to the isolation of a Co^{III}Pt^{II}₂ trinuclear and a $Co^{III}_{2}Pt^{II}_{2}$ tetranuclear complexes, the structures of which are controlled by the anions employed. The chiralselective formation of an analogous Co^{III2}Pt^{II2} complex by the reaction of the $Co^{III}Pt^{II}_2$ complex with fac(S)-[Co(aet)₃] (aet = 2-aminoethanethiolate) is also reported.

The 1:1 reaction of trans(N)-K[Co(D-pen-N,O,S)₂]^{6a} with trans-[PtCl₂(CH₃NH₂)₂]^{6b} in water in an ice bath gave a dark brown solution, from which black crystals ([1]Cl) were isolated by adding aqueous NaCl.⁷ The absorption spectrum of [1]Cl in water showed a d–d band at ca. 16×10^3 cm⁻¹ and an intense S-to-Co CT band at ca. 28×10^3 cm⁻¹ with a shoulder at lower energy, while its CD spectrum gives positive, negative, and positive CD bands from lower energy in this region.⁸ These spectral features are reminiscent of those of the S-bridged hexanuclear complexes, [M₃{Co(D-pen-N,O,S)₂]₃].^{5b} However, the elemen-

Figure 1. A perspective view of $[1]^+$.

tal analytical data of [1]Cl do not match with the formula for a 1:1 adduct of $[Co(D-pen)_2]^-$ and $[Pt(CH_3NH_2)_2]^{2+}$, but with that for a 1:2 adduct. The crystal structure of [1]Cl was determined by X-ray crystallography.⁹ As shown in Figure 1, the complex cation $[1]^+$ contains one octahedral $[Co(D-pen-N,O,S)_2]^-$ unit that is bound by two *trans*-[PtCl(CH₃NH₂)₂]⁺ moieties, forming a S-bridged $Co^{III}Pt^{II}_{2}$ trinuclear structure. The [Co(D-pen-N,O, S_{2}^{-1} unit in $[1]^{+}$ adopts a *trans*(O) geometry, which implies the occurrence of the geometrical isomerization. The coordination environment about each Pt^{II} atom is roughly square-planar, with three sites being coordinated by a thiolato S and two amine N atoms and the remaining site trans to a S atom being occupied by a Cl atom. The two Pt^{II} square-planes face to each other with a Pt…Pt distance of 3.2866(9) Å and a twist angle of ca. 55°, such that each of two amine groups forms an intramolecular N-H--O hydrogen bond with an adjacent carboxylato O atom (N \cdots O = 2.859(9) Å). The S-Co-S (93.4(1)°) and S-Pt-Cl (170.98(7)°) angles in $[1]^+$ are deviated from the ideal angles of 90° and 180°. In $[1]^+$, the two bridging S atoms have the R chiral configuration to give the $[trans(O)](R)_2$ isomer with a crystallographic C_2 symmetry.¹⁰ Note that the two terminal Cl atoms are hydrogen bonded with amine groups of a neighboring $Co^{III}Pt^{II}_{2}$ cation (av N···Cl = 3.199(8) Å), constructing a 1D-chain structure.⁸

When aqueous NaClO₄ was added to the 1:1 reaction mixture, instead of aqueous NaCl, black crystals of [**2**](ClO₄)₂ were isolated.⁷ While the overall absorption and CD spectral features of [**2**](ClO₄)₂ are similar to those of [**1**]Cl, notable differences are observed in more minute detail.⁸ Furthermore, the elemental analytical data of [**2**](ClO₄)₂ are consistent with the formula for a 1:1 adduct of [Co(D-pen)₂]⁻ and [Pt(CH₃NH₂)₂]²⁺. From these results, the formation of a Co^{III}₃Pt^{II}₃ hexanuclear structure analogous to [M₃{Co(D-pen-*N*,*O*,*S*)₂}] was anticipated. However, X-ray analysis revealed that [**2**]²⁺ has a Co^{III}₂Pt^{II}₂ tetranuclear structure, in which two octahedral [Co(D-pen-*N*,*O*,*S*)₂]⁻ units are connected by two *trans*-[Pt(CH₃NH₂)₂]²⁺ units (Figure 2).⁹ Each [Co(D-pen-*N*,*O*,*S*)₂]⁻ unit in [**2**]²⁺ adopts a *trans*(*O*) geometry, as does the unit in [**1**]⁺. The square-planar geometry about

Figure 2. A perspective view of $[2]^{2+}$.

two Pt^{II} atoms and the relative arrangement of two Pt^{II} planes $(Pt - Pt = 3.1735(4) \text{ Å}, \text{ twist angle} = \text{ca. } 49^\circ) \text{ in } [2]^{2+} \text{ are sim-}$ ilar to those in $[1]^+$. However, the S–Co–S (av 97.17(5)°) and S-Pt-S (av 167.96(4)°) angles are much more deviated from the ideal angles. This disadvantage appears to be compensated by the four intramolecular N-H-O hydrogen bonds (av N = 2.931(5) Å). The bridging S atoms in $[2]^{2+}$ also have the R configuration to form the $[trans(O)]_2(R)_4$ isomer with an averaged D_2 symmetry.¹⁰

It was recognized that $[1]^+$ is converted into $[2]^{2+}$ on treating with equimolar of trans(N)-[Co(D-pen-N,O,S)₂]⁻ in water in an ice bath. Prompted by this result, we carried out the reaction of $[1]^+$ with fac(S)- $[Co(aet)_3]^{6c}$ under the same conditions. When the reaction solution was chromatographed on an SP-Sephadex C-25 column, a dark green band containing $[3]^{3+}$ was eluted with 0.3 mol dm⁻³ aqueous NaClO₄, after the swept of the column with 0.2 mol dm⁻³ aqueous NaClO₄. The presence of a single isomer having aet and D-pen ligands in $[3]^{3+}$ was confirmed by the ¹H and ¹³C NMR spectra,¹⁰ and the elemental analytical data of $[3](ClO_4)_3$ isolated from the eluate were consistent with the formula for a 1:1:2 adduct of $[Co(D-pen)_2]^-$, [Co(aet)₃], and [Pt(CH₃NH₂)₂]^{2+.7} Indeed, X-ray analysis demonstrated that [3](ClO₄)₃ is a S-bridged Co^{III}₂Pt^{II}₂ tetranuclear complex, in which $[Co(aet)_3]$ and $[Co(D-pen)_2]^-$ units are spanned by two *trans*-[Pt(CH₃NH₂)₂] linkers (Figure 3).⁹ Again, the $[Co(D-pen-N,O,S)_2]^-$ unit in $[3]^{3+}$ has a *trans(O)* geometry. The $[Co(aet)_3]$ unit adopts the *fac(S)* geometry, as does the starting mononuclear fac(S)-[Co(aet)₃]. This is in contrast to the fact that the linkage of two $[Co(aet)_3]$ units with a square planar Pd^{II} or Pt^{II} was accompanied by the fac(S)-to-mer(S) isomerization.^{4a} The overall tetranuclear structure in $[3]^{3+}$ (av S-Pt-S = $165.9(3)^{\circ}$, N-Pt-N = $176(1)^{\circ}$, S-Co-S = $95.9(4)^{\circ}$) resembles that in $[2]^{2+}$, except the presence of fac(S)-[Co(aet)₃] unit, in place of trans(O)-[Co(D-pen-N, O, S)₂]⁻ unit. In [**3**]³⁺, two amine groups form intramolecular hydrogen bonds with a nonbridging S atom (av N…S = 3.29(3)Å),^{4b} which in turn weaken the N– H…O hydrogen bonds (av N…O = 3.30(4) Å). An interesting aspect of this reaction is that the Δ isomer of *fac*(*S*)-[Co(aet)₃] is selectively incorporated in the tetranuclear structure.¹¹ This result indicates that $[1]^+$ could serve as a "chiral molecular nipper" that enantioselectively catches a chiral molecule.

In summary, this study showed several unique, noteworthy features, involving (i) the controlled isolation of S-bridged trinuclear and tetranuclear structures in $[1]^+$ and $[2]^{2+}$ by the choice of counter ions (Cl^- vs ClO_4^-), (ii) the formation of a tetranuclear structure in $[2]^{2+}$ rather than a less hindered hexanuclear structure analogous to $[M_3{Co(D-pen-N,O,S)_2}_3]$, despite the

Figure 3. A perspective view of $[3]^{3+}$.

bulkiness of trans-[Pt(CH₃NH₂)₂] linker, which is most likely ascribed to the tight N-H-O hydrogen-bonding interaction, and (iii) the potential utility of $[1]^+$ as a "chiral molecular nipper." Investigation of the reactions with other trans-[PtCl2- $(RNH_2)_2$ complexes is currently underway.

References and Notes

- a) R. W. Saalfrank, C. Schmidt, H. Maid, F. Hampel, W. Bauer, A. Scheurer, Angew. Chem., Int. Ed. 2006, 45, 315. b) D. Fiedler, D. H. Leung, R. G. Bergman, K. N. Raymond, J. Am. Chem. Soc. 2004, 126, 3674.
- a) H. Miyake, K. Yoshida, H. Sugimoto, H. Tsukube, J. Am. Chem. Soc. 2004, 126, 6524. b) A. N. Khlobystov, M. T. Brett, A. J. Blake, N. R. Champness, P. M. W. Gill, D. P. O'Neill, S. J. Teat, C. Wilson, M. Schröder, J. Am. Chem. Soc. 2003, 125, 6753.
- T. Konno, Bull. Chem. Soc. Jpn. 2004, 77, 627, and references 3 therein.
- 4 a) Y. Chikamoto, M. Hirotsu, T. Yamaguchi, T. Yoshimura, T. Konno, Dalton Trans. 2004, 3654. b) Y. Chikamoto, T. Kawamoto, A. I.-Kamiyama, T. Konno, Inorg. Chem. 2005, 44, 1601.
- 5 a) T. Konno, N. Matsuno, K. Okamoto, M. Hirotsu, Chem. Lett. 1999, 1243. b) T. Konno, M. Hattori, T. Yoshimura, M. Hirotsu, Chem. Lett. 2000, 852. c) H. Honda, T. Yoshimura, M. Hirotsu, T. Kawamoto, T. Konno, Inorg. Chem. 2002, 41, 2229.
- a) K. Okamoto, K. Wakayama, H. Einaga, S. Yamada, J. Hidaka, Bull. Chem. Soc. Jpn. 1983, 56, 165. b) G. W. Watt, B. B. Hutchinson, D. S. Klett, J. Am. Chem. Soc. 1967, 89, 2007. c) D. H. Busch, D. C. Jicha, Inorg. Chem. 1962, 1, 884.
- 7 Calcd for $[1]Cl \cdot 3H_2O = [{PtCl(CH_3NH_2)_2}_2{Co(D-pen)_2}]Cl \cdot$ 3H₂O: C, 16.36; H, 4.31; N, 8.17%. Found: C, 16.37; H, 4.01; N, 8.24%. Yield: 68%. Calcd for $[2](ClO_4)_2 \cdot 2H_2O = [{Pt(CH_3 - 1))^2 \cdot 2H_2O} = [{Pt(CH_3 - 1))^2$ $NH_{2}_{2}_{2} \{Co(D-pen)_{2}_{2}\} (ClO_{4})_{2} \cdot 2H_{2}O: C, 19.80; H, 4.15; N,$ 7.70%. Found: C, 19.76; H, 4.44; N, 7.55%. Yield: 17%. Calcd for $[3](ClO_4)_3 \cdot 2H_2O \cdot NaClO_4 = [{Pt(CH_3NH_2)_2}_2 {Co(D-pen)_2}-$ {Co(aet)₃}](ClO₄)₃•2H₂O•NaClO₄: C, 14.90; H, 3.75; N, 7.82%. Found: C, 14.84; H, 3.76; N, 7.58%.
- 8 See Supporting Information.
- Crystal data for [1]Cl·3H₂O: fw 1028.13, Orthorhombic, C222₁, 9 a = 9.489(3), b = 18.998(5), c = 17.470(5) Å, V = 3149.3(14)Å³, Z = 4, $D_{\text{calcd}} = 2.168 \text{ g/cm}^3$, $R_1 = 0.035 (I > 2\sigma(I))$. Crystal data for [2](ClO₄)₂•8H₂O•4NaClO₄: fw 2053.84, Orthorhombic, $\begin{array}{l} P2_{1}2_{1}2_{1}, \ a=10.8286(16), \ b=20.198(2), \ c=29.719(3) \ \text{\AA}, \ V=6500.0(14) \ \text{\AA}^{3}, \ Z=4, \ D_{\text{calcd}}=2.099 \ \text{g/cm}^{3}, \ R_{1}=0.030 \ (I>6500.0(16)) \ \text{K}^{3}, \ Z=4, \ D_{\text{calcd}}=2.099 \ \text{g/cm}^{3}, \ R_{1}=0.030 \ (I>6500.0(16)) \ \text{K}^{3}, \ Z=4, \ D_{\text{calcd}}=2.099 \ \text{g/cm}^{3}, \ R_{1}=0.030 \ (I>6500.0(16)) \ \text{K}^{3}, \ Z=4, \ D_{\text{calcd}}=2.099 \ \text{g/cm}^{3}, \ R_{1}=0.030 \ (I>6500.0(16)) \ \text{K}^{3}, \ Z=4, \ D_{\text{calcd}}=2.099 \ \text{g/cm}^{3}, \ R_{1}=0.030 \ (I>6500.0(16)) \ \text{K}^{3}, \ Z=4, \ D_{\text{calcd}}=2.099 \ \text{g/cm}^{3}, \ R_{1}=0.030 \ (I>6500.0(16)) \ \text{K}^{3}, \ Z=4, \ D_{\text{calcd}}=2.099 \ \text{g/cm}^{3}, \ R_{1}=0.030 \ (I>6500.0(16)) \ \text{K}^{3}, \ Z=4, \ D_{\text{calcd}}=2.099 \ \text{g/cm}^{3}, \ R_{1}=0.030 \ (I>6500.0(16)) \ \text{K}^{3}, \ R_{1}=0.030 \ (I>600.0(16)) \ \text{K}^{3}, \ R_{1}=0.0(16) \ (I=600.0(16)) \ (I=600.0$ $2\sigma(I)$). Crystal data for [**3**](ClO₄)₃•2H₂O•NaClO₄: fw 1611.90, Hexagonal, $P6_3$, a = 19.879(5), c = 22.926(12) Å, V = 7846(5)Å³, Z = 6, $D_{calcd} = 2.047 \text{ g/cm}^3$, $R_1 = 0.063 (I > 2\sigma(I))$. 10 In the ¹H and ¹³C NMR spectra, each of [1]⁺, [2]²⁺, and [3]³⁺
- gives a single set of signals. See Supporting Information.
- 11 The Δ isomer of fac(S)-[Co(aet)₃] corresponds to the trans(O)isomer of $[Co(D-pen-N,O,S)_2]^-$, in which the skew pair of two *O*,*S*-chelate rings has the Δ configuration.